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Abstract 
“Tailings storage facilities typically represent the most significant environmental liability 
associated with mining operations.” (MMSD, 2002, p. 2)  Large tailings dams built to contain 
mining waste, among the largest dams and structures in the world, must stand in perpetuity.  A 
catastrophic release of a large amount of tailings could lead to long term environmental damage 
with huge cleanup costs.  Tailings dams have failed at a rate that is significantly higher than the 
failure rate for water supply reservoir dams.  The causes for the higher incidence of tailings dam 
failures between tailings and water supply reservoir dams are probably shaped by two factors: (1) 
the ability to use construction types for tailings dams that are more susceptible to failure; and, (2) 
the fact that tailings dams are most often constructed in sequential ‘lifts’ over several years that 
make quality control more challenging relative to water supply dams that are constructed all at 
once. 

We know that our technology and science has limits, and that there are significant economic 
incentives to make present day decisions about risk less, rather than more, conservative about the 
magnitude of these risks.  In looking at the long term risk from tailings impoundments to other 
resources, policy makers should view the risks from a conservative probabilistic perspective rather 
than relying on assumptions about specific hazards that are likely flawed.   

 
Long Term Tailings Dam Stability 
The construction and care of a tailings dam is a relatively new phenomenon to society and to 
mining, which historically disposed of its waste in the most convenient way.  Tailings 
impoundments have been around for about a century.3   

“Conventional dams generally do not need to be designed to last forever, as they have a finite life. 
Tailings dams have a closure phase as well as an operational phase.  They have to be designed and 
constructed to last “forever”, and require some degree of surveillance and maintenance long after 
the mining operation has shut down, and generation of cash flow and profit has ceased.” (MMSD, 
2002, p. 8) 
 “Conventional dams are viewed as an asset. As a result, their construction, operation, and 
maintenance receives a high standard of care and attention from owners, who often retain in-house 
dam engineering expertise. Contrast this to tailings dams, which have until recently been viewed by 
their owners as an unprofitable, money-draining part of the mining operation.  The significance of 
this aspect is that with such attitudes a mining operation would be naturally less inclined to expend 
effort in the management of its tailings facility than the owner of a conventional dam.” (MMSD, 
2002, p. 8) 

                                                                                          

1 Center for Science in Public Participation, 224 North Church Avenue, Bozeman, MT 59715, Ph. 406-585-9854, email: 
dchambers@csp2.org 
2 Ground Truth Trekking, PO Box 164, Seldovia, AK  99663, Ph: (907) 399 5530, email: hig314@gmail.com 
3 See MMSD, 2002, for a short summary of the history of modern mining. 
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Hydrology-Related Risk 
“Lack of control of the hydrological regime is one of the most common causes of failure. Of the 
cases reported here, the majority of failures were due to overtopping, slope instability, seepage and 
erosion; all caused by a lack of control of the water balance within the impoundments.”  (ICOLD, 
2001, p. 31) 
The water storage capacity of a tailings dam and the water release capacity, via a spillway, is 
governed by the choice of the maximum hydrologic event (storm and/or snow melt) that the facility 
will experience over its life.  Guidance for determination of the design flood event to be used for 
mine closure has been evolving, and is still in flux.  In 1995, the International Commission on 
Large Dams suggested that the Probable Maximum Flood be used as the design standard, but left 
the possibility of utilizing a lesser event open to consideration. 

“As in the case for the operating dam, hydrological criteria for safety of the dam after closure must 
be carefully considered.  The Probable Maximum Flood should be considered for this evaluation 
although the 100-year design flood is often accepted for this purpose.” (ICOLD, 1995c, p. 81) 
Six years later the International Commission on Large Dams took a stronger stand, recommending 
that the Probable Maximum Flood, not a lesser event, be used as the design event for mine closure. 

"All impoundments and their retaining dams need to be able to accommodate extreme hydrologic 
events, up to the Probable Maximum Flood." (ICOLD, 2001, p. 31) 
Yet even today the design hydrologic event for dam construction may not be the Probable 
Maximum Flood, but a lesser event.  The choice of a lesser event makes dam construction less 
expensive, and is often justified by evaluating the risk of potential impacts of dam failure.  The risks 
evaluated are most often focused on the potential for loss of human life and damage to existing 
infrastructure.  Long-term environmental impacts and cleanup costs are not emphasized, and often 
not considered. 

Meteorological events led to most of the tailings dam failures, with seismic events triggering the 
second most failures. (Rico, et. al., 2008a, p. 846)  Upstream-type dam construction was involved 
with more of these incidents than any other type. (Rico, et. al., 2008a, p. 849) 

Regulatory Framework 
The design standards for most tailings dams are determined by state dam safety agencies.  There are 
no federal regulations governing the construction and operation of tailings dams, and only minimal 
federal involvement in the design of tailings dams, usually only when there is a lack of state 
oversight.12  The standards that do exist often lack specificity, and implementation of the standards 
depend in large part on the professional judgment and experience of regulatory personnel.  While 
this builds regulatory and site-specific flexibility into permits for tailings dams, it also often means 
that critical specifications are often left for company consultants to determine.   

The design seismic event is often described with two terms, the Operating Basis Earthquake and the 
Maximum Design Earthquake.  The Operating Basis Earthquake (OBE) represents the ground 
motions or fault movements from an earthquake considered to have a reasonable probability of 
occurring during the functional life-time of the project. (Alaska Department of Natural Resources, 
2005, p. 6-6)  The Maximum Design Earthquake (MDE) represents the ground motions or fault 
movements from the most severe earthquake considered at the site, relative to the acceptable 
consequences of damage in terms of life and property. (Alaska Department of Natural Resources, 
                                                                                          

12 For example the Army Corps of Engineers, the US Forest Service, or Bureau of Land Management might be involved 
in tailings dam design if there is no state oversight of dam design for a mining project that requires a federal permit. 



Page 8 

2005, p. 6-6, 6-7)  Since a tailings dam must stand in perpetuity, the Operating Basis Earthquake 
must be equivalent to the Maximum Design Earthquake.   

The estimated largest earthquake that could occur at any given location is called the Maximum 
Credible Earthquake.  The Maximum Credible Earthquake (MCE) is defined as the greatest 
earthquake that reasonably could be generated by a specific seismic source, based on seismological 
and geologic evidence and interpretations. (Alaska Department of Natural Resources, 2005, p. 6-6)  
The Maximum Credible Earthquake is often associated with a recurrence interval of 10,000 years.   

There are no regulatory guidelines for the choice of the location of the Maximum Design 
Earthquake or Maximum Credible Earthquake.  The location of these seismic events is left for 
experts to determine.  Engineering experts from consulting firms, hired by mining companies, use 
deterministic or probabilistic methods to determine the location and size of the Maximum Credible 
Earthquake and/or Maximum Design Earthquake.   

But these seismic event experts are not experts on determining the amount of risk that is appropriate 
in determining public policy.  Public policy determinations are typically reflected in regulatory 
requirements, but for the determination of the size of the Maximum Credible Earthquake and/or 
Maximum Design Earthquake for a tailings dam there is a great deal of regulatory flexibility, often 
exercised by one person.  For the location of the Maximum Credible Earthquake and/or Maximum 
Design Earthquake for a tailings dam, there is scant federal or state regulatory guidance. 

Seismic Safety Standards for Tailings Dams 
There is a risk that a large earthquake might cause catastrophic failure of a tailings dam, with the 
release of a large amount of tailings, and could lead to long term environmental damage with huge 
cleanup costs.  The probability of such a catastrophic failure is low, but the consequences should it 
occur are very high.  Cleanup costs are usually borne by the public, and if the tailings are not 
cleaned up, then the long term environmental and social costs would also borne by the public. 

Choice of the “Design Event” – How Large and How Far Away? 

One of the most critical parameters for the design and long term safety of a tailings dam is the 
choice of the Maximum Design Earthquake, or the largest event that the dam would be expected to 
experience during its functional lifetime, and survive the shaking produced by this event.  Because 
tailings dams are structures that must impound waste with chemical properties and/or physical 
properties that pose long term risk to the public and the environment, assumptions related to critical 
design parameters for these structures should be the most conservative in order to protect public 
interests and public safety. 

The design seismic event is a predicted maximum earthquake described in terms of size and 
distance from the dam.  This event is input into computer models to evaluate how a dam will 
respond to earthquakes.  The science used to determine this design seismic event, while 
sophisticated, has limits.  We have only been able to record the physical properties of seismic 
events since the early 1900’s. (“Introduction to Seismology” Peter Shearer, Cambridge University 
Press).  On most faults, no earthquake has happened within that time frame, so paleoseismology 
techniques must be used to estimate earthquake size in the more distant past.  In many areas, the 
faults are not mapped or analyzed, further reducing the confidence in these determinations.  There is 
still a great deal of uncertainty over the potential size, and more importantly the location, of future 
seismic events. 

For tailings dams the Maximum Design Earthquake is the relevant variable, since the facility (dam) 
must provide perpetual containment for the waste.  
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The choice of the Maximum Design Earthquake for a tailings dam becomes important not only 
from the perspective of determining the largest seismic event that dam can withstand and still hold 
back the material it is impounding, but also because there is a direct correlation between the size of 
the design event and the cost of constructing the dam – the larger the design seismic event, the 
greater the cost of the dam.  Tailings dam construction costs generally run from tens to hundreds of 
millions of dollars.  Tailings dam construction cost is one of several significant factors in 
determining the cost of mining, and the competiveness of the mine in the international markets.13 

Estimating Earthquake Size and Location 

Probabilistic Method:  In order to estimate the earthquake potential of a given region, geologists 
use data from historic earthquakes, combined with studies of known faults.  For well-studied faults, 
there are both historic measurements, and prehistoric earthquake estimates gleaned from 
paleosismic studies.  A probability distribution over time is created based on the recurrence interval 
(how frequently an earthquake occurs) and the distribution of earthquake sizes on that fault.  To 
account for the potential of earthquakes on unknown faults, this distribution is combined with 
information from smaller, historic earthquakes across the region.  Seismic instruments can measure 
earthquakes down to a very small size, and record many earthquakes for which no fault is known.  
Statistical methods can be used to take the occurrence and size of these small earthquakes and 
estimate a probability distribution that includes larger earthquakes as well.  In order to choose a 
Maximum Design Earthquake, a time frame and a probability is specified.  For example, you might 
decide to design for the largest earthquake with at least a 2% chance of occurrence, over the next 
1,000 years.  

Deterministic (Fault Length) Method:  Another method for determining earthquake potential is to 
estimate the maximum energy that could be released for a given fault.  Earthquake energy in a 
given event is closely related to the length of rupture.  Therefore, a rupture across the entire length 
of a fault will produce the maximum possible energy on that fault.  This can be calculated if the 
fault length is known.  The advantage of this method is that it gives a true maximum, rather than a 
probability, for a known fault, eliminating the uncertainties in estimating recurrence interval and 
earthquake size prior to instrumental measurement.  The disadvantage of this method is that it does 
not account for unknown faults, or faults of unknown length.   

If the deterministic (fault length) method is used to estimate the maximum earthquake size, location 
can be described simply as the closest point on the measured fault.  In the probabilistic method a 
statistical analysis is done to determine the largest earthquake that might occur in a given 
geographic area.   

"Strictly speaking, the MCE is a deterministic event, and is the largest reasonably conceivable 
earthquake that appears possible along a recognized fault or within a geographically defined 
tectonic province, under the presently known or presumed tectonic framework. But in practice, due 
to the problems involved in estimating of the corresponding ground motion, the MCE is usually 
defined statistically with a typical return period of 10,000 years for countries of low to moderate 
seismicity." (Wieland, M, ICOLD, 2008, p.7) 
However, probabilistic methods can be viewed as inclusive of all deterministic events with a finite 
probability of occurrence. (McGuire, c1999, p. 1) 

"Deterministic and probabilistic seismic hazard analyses should be complementary. The strength of 
one over the other depends on the earthquake mitigation decisions to be made, on the seismic 
                                                                                          

13 Other significant cost factors for a mine include the construction of the mine and mill facilities, power generation, and 
operating costs (labor, materials, fuel, etc.). 
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environment, and on the scope of the project. In general, more complex decisions and subtler, 
detailed seismic environments strongly suggest the probabilistic analysis, whereas simpler 
decisions and well-understood seismicity and tectonics point toward deterministic 
representations.”(McGuire, c1999, p. 6)  
The “Design Earthquake” – How Large and How Far Away? 

"According to the current ICOLD guidelines, large dams have to be able to withstand the effects of 
the so-called maximum credible earthquake (MCE). This is the strongest ground motion that could 
occur at a dam site. In practice, the MCE is considered to have a return period of several thousand 
years (typically 10’000 years in countries of moderate to low seismicity)." (Wieland, ICOLD, 2001) 
The choice of the Maximum Credible Earthquake as the Maximum Design Earthquake for a tailings 
dam is an appropriately conservative choice for the design seismic event.  For most structures, 
including the design of buildings and other structures that are designed with finite lifetimes, the 
choice of a Maximum Design Earthquake is often one with a recurrence interval significantly less 
than that of the Maximum Credible Earthquake, since these structures will not be used indefinitely.  

Tailings dams, however, require a very conservative choice of design event.  Once these structures 
are built, it is not economically or environmentally viable to move the waste that is impounded 
behind the dam.  The dam must hold this waste safely in perpetuity.  We don’t know how long 
‘perpetuity’ means, but 10,000 years (e.g. the approximate time since the last ice age) is a minimum 
approximation.   

The unintended release of the waste behind a tailings dam imposes real costs on society.  There is a 
direct economic cost associated with cleaning up the waste that would escape from a failed 
impoundment, which can run into the hundreds of millions of dollars.14  If there is no cleanup the 
long term environmental costs will be borne by local communities, both natural and human, and 
could be even larger than the direct cleanup costs. 

Tailings dams, which must impound the waste behind the dam in perpetuity, should use the 
Maximum Credible Earthquake as the Maximum Design Earthquake.  However, because cost is a 
significant factor in the economic viability of mining projects, the Maximum Credible Earthquake 
is considered, but often not required as the Maximum Design Earthquake for tailings dams in many 
regulatory jurisdictions.15  

Although much progress has been made on designing large dams to withstand seismic events, there 
is still much progress to be made. 

"Dams are not inherently safe against earthquakes. In regions of low to moderate seismicity where 
strong earthquakes occur very rarely, it is sometimes believed (i) that too much emphasis is put on 
the seismic hazard and earthquake safety of dams, and (ii) that dams designed for a seismic 
coefficient of 0.1 are sufficiently safe against earthquakes as none of them has failed up to now. 
Such arguments are not correct. 
For the earthquake safety evaluation the same criteria (dam must withstand the MCE ground 
motion) as for the hydrological safety (PMF must be released safely) have to be considered." 
(Wieland, M, ICOLD, 2008, p.7) 

                                                                                          

14For example the Los Frailes dam break (near Seville, Spain), April 1998.  As of August 2002 the cleanup cost was 
276 million Euros (El País/El Mundo, August 3, 2002) 
15 For example, the State of Alaska does not require the use of the Maximum Credible Earthquake for tailings dam 
design. (Alaska Department of Natural Resources, 2005, Table 6-2. Operating- and Safety-Level Seismic Hazard Risk) 
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Once the size of the design seismic event has been determined, it must be given a location.  The 
further away the tailings dam is from the location of the earthquake, the less energy the tailings dam 
will need to withstand in order to maintain its structural integrity.  Similar to the choice of a 
Maximum Design Earthquake, the closer the location of the earthquake to the tailings dam, the 
higher the cost of building the dam, because the closer the earthquake the more energy the dam will 
have to withstand.    

Seismologists know that there are many active faults that have not been mapped or have been 
mapped inaccurately, that some faults believed to be inactive may actually be active, and that there 
are many inactive faults that may become active again.16  Because of these considerations, 
probabilistic methods are the more conservative way to determine the magnitude of a Maximum 
Credible Earthquake for dam analysis. 

For tailings dams the most conservative choice for the location of the Maximum Design Earthquake 
would be what is sometimes referred to as a ‘floating earthquake’ on a fault that passes through the 
site of the dam.  This is a way of recognizing that we do not know the present, future, and even the 
past locations of significant faulting, and associated earthquakes. (National Research Council, 1985, 
pp. 67-68)  The conservative choice for a Maximum Design Earthquake would be the Maximum 
Credible Earthquake that ruptures the ground surface on which the dam is built.   

Post Closure Monitoring and Maintenance 
Even when the reclamation process has been completed for a tailings facility, there is still need for 
ongoing monitoring and maintenance.   

“Experience regarding the long term behavior of tailings storage facilities (TSFs) is limited.  Most 
are still in the phase of after care.  Our knowledge is constantly increasing, but the closed and 
remediated tailings dams today (2006) are less than one or two decades old i.e. most experience of 
the long term stability of tailings dams after closure is still limited.  In this case the long term is 
defined as 1000 years, or more.” (ICOLD, 2006, p. 39) 
The International Commission on Large Dams/United Nations Environmental Program publications 
describe some of the factors driving the need for long term monitoring and maintenance.  These 
include dam stability, which requires monitoring for (ICOLD, 1996b, p. 21):  

 seepage discharges through the dam, foundation, or abutments; 
 phreatic surface17 in the tailings pond and dam; 
 pore pressures in the dam; 
 horizontal and vertical movements in the dam  

In addition to these conventional risks to dams, the need to confine tailings behind the constructed 
dam impose additional long-term monitoring concerns, including progressive processes that 
degrade dam stability over time, including (ICOLD, 2006, p. 44):  

 weathering of materials 
 water and wind erosion 
 ice and frost forces 
 intrusion by vegetation and animals  

                                                                                          

16 Faults, and the corresponding earthquakes, are most often very deep structures.  The major source of the energy 
associated with an earthquake is usually located a significant distance below the earth’s surface.  
17 The phreatic surface is the surface of the water-saturated part of the ground, i.e. the groundwater level. 
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Also, there are known faults in the area that were once active, and which may or may not currently 
be active.  The Lake Clark Fault, an extension of the Castle Mountain Fault, extends southwest 
from Lake Clark Pass down through Lake Clark.  (Haeussler et al. 2004)  The Bruin Bay Fault 
branches from the Castle Mountain and Lake Clark faults near Tyonek, and runs south along the 
Cook Inlet coast into Katmai National Park. 

Given the lack of instruments and geological fieldwork in the area it is very possible that subtle 
evidence of activity on these faults and others has simply been missed. 

There are several potential sources of earthquakes that might affect Pebble.  The source for the 
largest potential earthquake comes from the subduction zone along the Aleutian Trench south of the 
coast in the Gulf of Alaska.  This was the source of the famous 1964 magnitude 9.2 Alaska 
earthquake.   

There are also a series of fault systems that parallel the Aleutian Trench on the Alaska mainland 
north of the subduction zone.  One of these faults is the Denali Fault zone.  A magnitude 7.9 
earthquake occurred along the Denali Fault in 2002.  Another of these parallel faults is the Lake 
Clark Fault.  This is the fault that comes closest to Pebble.   

A final seismic threat is what is generally termed as a “floating’ earthquake, that is, one that is not 
associated with a known fault.  It is generally assumed that this floating earthquake would occur 
under the site being evaluated, but could also be of a lesser magnitude than an earthquake 
associated with a known fault system.  Any actual earthquake will occur on a fault, but the 
"floating" earthquake is a statistical construct used to estimate the risk of an earthquake on an 
unknown fault. 

The energy from an earthquake dissipates as it radiates from the source (the source is a planar 
surface extending into the earth rather than a point).  So, the further away a location is from the 
source of the earthquake, the less energy is available to cause motion at the dam location.  The 1964 
earthquake ruptured to within approximately 125 miles from the Pebble site, while the 2002 rupture 
extended to within about 260 miles.  The Lake Clark Fault (an extension of the Castle Mountain 
Fault) is less than 20 miles from Pebble.  Therefore, the Lake Clark Fault is much more likely to be 
the source of the Maximum Credible Earthquake at the Pebble Mine site. 

This is especially problematic, because the location of the Lake Clark Fault is not known, and it is 
possible that it runs directly through the area of proposed development at Pebble (Haeussler et. al., 
2004).  The Lake Clark Fault is almost certainly less active than the Denali Fault, meaning that it 
has a longer recurrence interval between earthquakes.  However, in the long time span that a 
tailings dam is required to maintain integrity, it has a significant chance of producing an earthquake 
of 7.9 or similar magnitude.  A difference of only a mile in the location of this fault could have a 
dramatic impact on the potential ground acceleration at the tailings dam, and hence on the 
engineering constraints for the dam.  The larger the earthquake, the more energy, and the longer the 
period of shaking that will take place at the dam site.   

Alaska Regulatory Requirements 

Alaska dams fall into one of three classes:  

(1) Class I - Probable loss of one or more lives 
(2) Class II - No loss of life expected, although a significant danger to public health may exist 
(3) Class III - Insignificant danger to public health 

(Alaska Department of Natural Resources, 2005, Section 2.4 Hazard Potential 
Classification, Table 2-1. Hazard Potential Classification Summary, in Appendix B of this 
paper) 
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The Alaska dam classification system is designed primarily for water retention dams.  Tailings 
dams are not specifically mentioned in the Alaska regulations, yet tailings dams are the largest dam 
structures in the state.  From a classification standpoint the main difference between a Class I and 
Class II dam is essentially that people are directly at risk below a Class I dam, but there are no 
human habitations directly below a Class II dam.  However, from a performance standpoint the 
most significant difference in dam safety requirements between a Class I and Class II dam is the 
size of the earthquake the dam is required to withstand. (see Alaska Department of Natural 
Resources, 2005, Section 6.3.2 Design Earthquake Levels, T able 6-2. Operating- and Safety-Level 
Seismic Hazard Risk, in Appendix B of this paper)18  Class II dams must withstand seismic events 
with return periods of 1,000 – 2,500 years, and Class I dams 2,500 years to the Maximum Credible 
Earthquake. (Alaska Department of Natural Resources, 2005, T able 6-2)  Note that it is not 
mandatory to use the Maximum Credible Earthquake as the Maximum Design Earthquake for a 
Class I dam. 

Choice of MCE & MDE at Pebble 

As discussed in Knight-Piesold, 2006, under Alaska dam classification regulations a tailings dam 
would be classified as a Class II dam. (Knight Piesold Ltd., 2006, Section 3.2.3 Design 
Earthquakes)   

The most recent information about seismic considerations for tailings dams at the Pebble site comes 
from the Preliminary Assessment of the Pebble Project, Southwest Alaska, Wardrop-Northern 
Dynasty Mines, February 17, 2011, p. 52: 

“Recognizing the seismic characteristics of Alaska, particular attention has been paid to 
understanding seismic risk factors in the TSF design.  The embankment design parameters conform 
to Alaska Dam Safety regulations, under which they would be classified as Class II structures.  
Extensive research has been conducted into historical seismic events, in Alaska generally and in 
southwest Alaska in particular, to support an assessment of the probability and magnitude of 
seismic events that might affect Pebble. 
Analysis of public domain literature was undertaken to determine the location of likely sources for 
seismic events near Pebble, with the most likely candidate identified as the Lake Clark Fault.  The 
location of this fault has been identified as part of a geophysical survey of the region.  Using these 
data, as well as public domain information, the energy that might be released if a major earthquake 
were to occur along the Lake Clark Fault has been determined. 
The parameters used in this analysis are extremely conservative.  For instance, while there is no 
evidence of movement along the Lake Clark Fault since the last glaciers receded some 10,000 years 
ago, TSF seismic design criteria assume that it is an active fault.  Further, sections of the Lake 
Clark Fault nearest the Pebble Project are actually splays of the main fault and thus unlikely to 
release the same energy as if the entire fault was to move.  Nonetheless, TSF seismic design criteria 
have conservatively assumed that the Lake Clark Fault is both active and capable of a seismic event 
equivalent to slippage along the entire fault.”   

                                                                                          

18 This points to a fundamental flaw in the Alaska Dam Classification Seismic Stability Regulations, where large 
tailings dams could be regulated as Class II dams with significantly less seismic safety requirements than Class I, even 
though they are the largest dams in Alaska, and have an infinite lifetime.  The author has discussed this situation with 
officials in the Alaska Department of Natural Resources, and while sympathetic they point to the difficulty in changing 
regulations, and the flexibility of the State to require some dams to be Class I.  However, some large Alaska tailings 
dams have been classified as Class II in the past (Red Dog, although it is voluntarily being upgraded to Class I), and the 
possibility for this happen again still unnecessarily exits. 
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This 2011 summary appears to reflect earlier work done by Knight-Piesold Ltd., for Northern 
Dynasty in 2006.  In the sections on seismic risk from the Knight-Piesold Ltd., 2006, Report.19  

“Consistent with current design philosophy for geotechnical structures such as dams, two levels of 
design earthquake have been considered: the Operating Basis Earthquake (OBE) for normal 
operations; and the Maximum Design Earthquake (MDE) for extreme conditions (ICOLD, 1995a). 
Values of maximum ground acceleration and design earthquake magnitude have been determined 
for both the OBE and MDE. 
Appropriate OBE and MDE events for the facilities are determined based on a hazard classification 
of the facility, with consideration of the consequences of failure.  The hazard classification was 
carried out using the criteria provided by the document “Guidelines for Cooperation with the 
Alaska Dam Safety Program” (2005).  Classification of the facilities is carried out by considering 
the potential consequences of failure, including loss of life, economic loss and environmental 
damage.  The hazard classification has been assessed as at least Class II (Significant).  The OBE 
and MDE are selected based on the dam hazard classification and an appropriate earthquake 
return period, as defined by the “Guidelines for Cooperation with the Alaska Dam Safety 
Program” (2005). 
For a Class II hazard classification, the OBE is selected from a range of return periods from 70 to 
200 years, depending on the operating life of the facility, the frequency of regional earthquakes and 
the difficulty of quickly assessing the site for repairs.  The impoundment would be expected to 
remain functional during and after the OBE and any resulting damage should be easily repairable 
in a limited period of time. 
The MDE is typically selected from a range of return periods from 1,000 to 2,500 years for a Class 
II hazard classification.  However, the MDE for the Pebble TSF has been conservatively based on a 
Class I hazard classification making it equivalent to the Maximum Credible Earthquake (MCE), 
which has a bedrock acceleration of 0.30 g corresponding to a magnitude M7.8 earthquake, 
occurring along the nearby Castle Mountain Fault system.” (Knight Piesold Ltd. 2006, Section 2.5 
Seismicity and Embankment Stability) 
Although the Pebble NDM consultants have decided to base their calculations on the “maximum 
possible earthquake,” their use of the deterministic method for the Maximum Design Earthquake 
does not appear to meet ICOLD standards for locating the Maximum Design Earthquake.  The 
Pebble NDM consultants assume the Lake Clark Fault is 18 miles from the minesite, and using this 
deterministic location ignores the risks from unknown or poorly-mapped faults, and could also lead 
to underestimating the amount of energy that could impact a tailings dam at the Pebble minesite.20  

Although Knight-Piesold considers that Maximum Design Earthquake for the Pebble dam design to 
be the Maximum Credible Earthquake, an examination of Table 3.1 of the report reveals that the 
calculations for maximum horizontal acceleration are based on a 1-in-5000 year earthquake, not the 
1-in-10,000 year event recommended by the International Commission on Large Dams. (Knight 
Piesold Ltd., 2006, Section 3.2.2 Seismic Hazard Analyses, Table 3.1, in Appendix A of this paper)  
The choice for the magnitude of the Maximum Credible Earthquake for Pebble is not the same, and 
not as conservative, as that recommend by International Commission on Large Dams. 

                                                                                          

19 See Appendix A of this paper for these sections in their entirety. 
20 Table 3.2, Section 3.2.2 Seismic Hazard Analyses, Knight Piesold Ltd., 2006, in Appendix B of this paper, shows the 
deterministic locations and associated magnitudes of the Maximum Design Earthquakes analyzed for Pebble in 2006.  
A probabilistic floating earthquake is not included in this analysis. 
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2May11)  This earthquake was not located on a known fault, but it is potentially in line with one of 
the splays of the Lake Clark Fault.  This type of earthquake suggests either the extension of a 
known fault or an unmapped fault, either of which may pass closer to the Pebble site than the 
current estimate. 

Picking the Maximum Design Earthquake using a deterministic method when the location of the 
fault is uncertain is insufficiently conservative to protect public safety over the life of the tailings 
dam.  Lacking more accurate mapping, a probabilistic method that locates a ‘floating earthquake’ 
beneath the facility should be used.  

Conclusions 
As a society we still don’t fully understand the long term implications of storing billions of tons of 
potentially harmful waste in large impoundments.  We have been building large tailings dams for 
about a century, but these structures must maintain their integrity in perpetuity, so we have only a 
relatively short history of their performance.  What we do know is that the technology for designing 
and identifying the long term threats to these structures has been advancing steadily during this 
same time.  These advances to the technology have usually been prompted by dam failures that 
have identified the need for further analysis, as well as the need for more conservative assumptions 
for design specifications and in the magnitude of natural events like floods and earthquakes that 
pose long term risks for these structures.  When we consider the recorded life of these structures – a 
century at most – to the length of time that they must function – millennia – the number of failures 
we have experienced in the first century of their operation is not comforting. 

"Causes (for dam failure) in many cases could be attributed to lack of attention to detail. The slow 
construction of tailings dams can span many staff changes, and sometimes changes of ownership. 
Original design heights are often exceeded and the properties of the tailings can change. Lack of 
water balance can lead to “overtopping”: so called because that is observed, but may be due to 
rising phreatic levels causing local failures that produce crest settlements." (ICOLD, 2001, p. 53) 
"... the technical knowledge exists to allow tailings dams to be built and operated at low risk, but 
that accidents occur frequently because of lapses in the consistent application of expertise over the 
full life of a facility and because of lack of attention to detail." (ICOLD, 2001, p. 55) 
"By highlighting the continuing frequency with which (dam failures) are occurring and the severe 
consequences of many of the cases, this Bulletin provides prima facie evidence that commensurate 
attention is not yet being paid by all concerned to safe tailings management." (ICOLD, 2001, p. 55) 
"... the mining industry operates with a continual imperative to cut costs due to the relentless 
reduction in real prices for minerals which has been experienced over the long term, plus the low 
margins and low return on capital which are the norm. The result has been a shedding of 
manpower to the point where companies may no longer have sufficient expertise in the range of 
engineering and operational skills which apply to the management of tailings." (ICOLD, 2001, p. 
56) 
The preliminary design choices for the Pebble project provide interesting insight into the technical, 
environmental, and economic factors that drive decisions today and may affect future generations 
that will inherit the responsibility and liability for managing these structures.  Policy guidance from 
an organization with responsibilities to guide the safe construction and management of large dams 
(International Commission on Large Dams) tell us that we should be making ‘conservative’ 
engineering decisions when designing tailings dams.  But we can also see that the recommended 
design specifications for the tailings dams at Pebble (and at other mines) are not based on the most 
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conservative assumptions about the source and proximity of the largest seismic event that might be 
experienced at the dam site.   

While these decisions may be rationalized in terms of defining ‘reasonable’ risk, we must also 
acknowledge that lessening the assumptions about the amount of risk associated with the design of 
the tailings dam may be motivated by lessening the present day economic cost to the builders the 
dam.   

One well published author, in discussing mine waste disposal, has noted: 

“… a well intentioned corporation employing apparently well-qualified consultants is not adequate 
insurance against serious incidents” (Morgenstern, N.R., 1998) 

By making ‘reasonable’ rather than ‘conservative’ assumptions we may be increasing the long term 
risk to the society which will inherit the dam and the responsibility for managing the waste, and any 
future costs associated with the escape of impounded waste due to an unanticipated event.   

“The likelihood of extreme events is proportionally large in the long-term phase.” (ICOLD, 1996a, 
p. 35) 
The potential for an ‘unanticipated’ event should drive our initial design assumptions to be more 
conservative, but there is ever present economic pressure to limit the extent of these conservative 
assumptions.   
As present day events have shown us – the Gulf oil spill, which the oil industry repeatedly said 
couldn’t happen; and, the Japan earthquake, which released 11 times as much energy as the 
maximum earthquake estimated by today’s seismic risk experts – demonstrate that we don’t fully 
understand the nature of industrial hazards.  And, as the nuclear reactor accident that accompanied 
the Japan earthquake and tsunami have shown, we don’t even know some of the critical questions 
we should be addressing about these hazards.   

In looking at the long term risk from tailings impoundments to other resources – the economic and 
environmental risks to future generations, or the long term risk to a renewable fishery in Bristol Bay 
– policy makers should view the risks from a conservative probabilistic perspective rather than 
relying on assumptions about specific hazards that are likely flawed.  We know that our technology 
and science has limits, and that there are significant economic incentives to make present day 
decisions about risk less, rather than more, conservative about the magnitude of these risks.21   

##### 
                                                                                          

21 One professional in this field has described this situation thusly: 

“I have concluded from all these failures that the only way is extreme conservatism, no reliance on the opinions of 
others—however reputable—and full site characterization and detailed analyses. For even now I am involved in the 
design of a tailings facility in a part of the world where the design earthquake is 8.5. That is big and could send 
everything down the valley and the experts say there is no problem and I think they are deluded.  

I have written that I believe those who focus on single causes of failure are deluded. There is no single reason for 
failure of a mine geowaste facility. All failures that I have known are the result of a string of minor incidents. If but one 
of this string of incidents had been dealt with, no failure would have occurred. This is pretty much standard accident 
theory these days, although it seems not to have entered the otherwise bright minds of those who write on the failure of 
mine geowaste facilities. Pity them, and pity the profession for remaining so ignorant and failure oriented through 
failing to keep up with modern ideas and theories.  

So the failure of mine geowaste facilities will keep on happening. It is inevitable. The professionals are blind and 
behind times. The operators are greedy and careless. Nobody reads the guidelines. The peer reviewers are old and 
sleepy. The pressures to profit are intense.”  (Slimes Dam - aka Tailings Storage Facility - Failure and what it meant to 
my mining mindset, April 19, 2011 by Jack Caldwell, http://ithinkmining.com) 
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3.2 SEISMICITY 
3.2.1 Regional Seismicity  
Alaska is the most seismically active state in the United States and in 1964 experienced the second 
largest earthquake ever recorded worldwide.  Both crustal earthquakes in the continental North 
American Plate and subduction earthquakes affect the Alaska region.  Historically, the level of 
seismic activity is highest along the south coast, where earthquakes are generated by the Pacific 
Plate subducting under the North American plate.  This seismic source region, known as the 
Alaska-Aleutian megathrust, has been responsible for several of the largest earthquakes recorded, 
including the 1964 Prince William Sound magnitude 9.2 (M9.2) earthquake.  There is potential for 
a future large subduction earthquake (M9.2+) along the southern coast of Alaska, and this seismic 
source zone is located approximately 125 miles from the project site. 

Several major active faults in Alaska have generated large crustal earthquakes within the last 
century.  A magnitude 7.9 earthquake occurred along part of the Denali fault in 2002, 
approximately 44 miles south of Fairbanks.  The western portion of the Denali Fault trends in a 
northeast-southwest direction, approximately 125 miles north of the project site.  Approximately 19 
miles northeast of the project site is the western end of the northeast-southwest trending Castle 
Mountain Fault, which terminates approximately at the northwest end of Lake Clark.  A magnitude 
7.0 earthquake associated with this fault occurred in 1933.  The Denali and Castle Mountain faults 
are capable of generating large earthquakes with magnitudes in the range of M7.5 to M8.0. 

3.2.2 Seismic Hazard Analyses  
The seismic hazard for the Pebble project has been examined using both probabilistic and 
deterministic methods of analysis. 

Maximum bedrock accelerations have been determined based on the published USGS probabilistic 
seismic hazard model for Alaska.  This was developed by the USGS to produce their latest seismic 
hazard maps for Alaska.  Maximum horizontal acceleration values have been determined for return 
periods ranging from 100 years to 5000 years.  The results have been summarized in Table 3.1, in 
terms of earthquake return period, probability of exceedance and maximum acceleration.  The 
calculated probabilities of exceedance assume a design operating life of 20 years.  For a return 
period of 475 years the corresponding maximum acceleration is 0.14g, implying a moderate seismic 
hazard. 
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APPENDIX B 

 
 

ALASKA DAM CLASSIFICATION 
SEISMIC STABILITY REGULATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Guidelines for Cooperation with the Alaska Dam Safety Program, 
Prepared by Dam Safety and Construction Unit, Water Resources 

Section, Division of Mining, Land and Water, Alaska Department of 
Natural Resources, June 30, 2005, Sections 6.2, 6.3, 6.4 
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Hazard 
Potential Dam Type 

Computer 
Analysis 

Graphical or 
Empirical 
Analysis 

Manual 
Analysis 

Finite 
Element 
Analysis 

Class I All P V S 

Class II All P V S 

Class III Earth and rock fill, <25 feet tall O, S P O 

Class III Earth and rock fill, 25 feet or 
taller 

P V 

Class III All others S O O S 

P = Primary method of analysis 
S = May be required under special circumstances 
V = Verification of primary method 
O = Optional method of analysis 
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Dam Hazard Return Period, Years 
Classification Operating Basis Earthquake Maximum Design Earthquake 

I  

II 

III 

150 to >250 

70 to 200 

50 to 150 

2,500 to MCE 

1,000 to 2,500 

500 to 1,000 
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